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SUPERSONIC FLUTTER OF SIMPLY 

SUPPORTED ISOTROPIC SANDWICH PANELS* 

By Larry L. Erickson and Melvin S. Anderson 

Langley Research Center 

SUMMARY 

JA theoretical solution using two-dimensional static aerodynamics is presented for 

the supersonic flutter characteristics of flat rectangular isotropic sandwich panels with 

simply supported edges.    Tables and charts giving the values of the dynamic-pressure 

parameter required for flutter are presented for various values of panel length-width 

ratio, shear flexibility, and midplane stress.   It is found that a decrease in transverse 

shear stiffness will usually lower the dynamic pressure required to induce flutter.   How- 

ever, for certain cases of midplane tension the opposite effect occurs.    Panel mode 

shapes are also presented and a comparison is made of the two-mode Galerkin, the pre- 

flutter, and the exact flutter solutions'^! 

INTRODUCTION 

Panel flutter is an important design consideration for vehicles traveling at high 

Mach numbers.    Consequently, considerable literature has been published dealing with 

several aspects of the problem.    (See ref. 1.)   One aspect which has not been adequately 

evaluated is the effect of transverse shear flexibility on the flutter characteristics of 

sandwich panels.    Light-weight structural configurations for supersonic and hypersonic 

vehicles may incorporate stiffened panels such as honeycomb sandwich panels which in 

most cases cannot be considered rigid in shear.    Therefore, unconservative designs may 

result if the transverse shear stiffness of such panels is not taken into account. 

An estimate of the influence of shear flexibility on panel flutter was provided in 

reference 2 for flat and curved isotropic panels and in reference 3 for orthotropic panels 

where results of two-mode Galerkin solutions were presented.   However, it is known that 

these approximate solutions become increasingly in error as the length-width ratio 

increases.   As in references 2 and 3, it is assumed herein that the aerodynamic loading 

is given by two-dimensional static aerodynamics which are incorporated with the 

*The basic theoretical development presented herein was given in a thesis by 

Melvin S. Anderson in partial fulfillment of the requirements for the degree of Doctor of 

Philosophy in Engineering Mechanics, Virginia Polytechnic Institute, Blacksburg, Virginia, 
June 1965. 



small-deflection theory for flat sandwich panels developed in reference 4.   However, in 

the present investigation, the resulting differential equations are solved exactly. 

The results of reference 5 indicate that for the range of parameters shown therein, 

panel flutter analyses based on this simple aerodynamic theory are reasonably accurate 

for isotropic panels without shear flexibility when compared with the results obtained by 

using three-dimensional unsteady aerodynamics.    Thus, for most cases, the results 

obtained herein are not expected to differ greatly from results that would be obtained by 

using more accurate aerodynamic theories. 

The numerical results of the analysis are presented in the form of tables and charts 

and are discussed.   Details of the analysis appear in the appendixes. 

SYMBOLS 

A,B,C coefficients appearing in equations (A6) 

kx - 2n2 + r(n2kx + <p\ 

length of panel 

0 (l + n2r) - n4 

1=   "4 

(1 - rkx) 

I.     "4 
l-rkx 

width of panel 

D flexural stiffness of isotropic sandwich panel, 

Eftfhc
2(l +-^ 

V      hc/ Eftf3 

+ 
2(1 - M2) 6(l - M2) 

DQ transverse shear stiffness of isotropic sandwich panel,   Gchcll + — 

02,02,03 coefficients defined by equations (Al5) 

Ef Young's modulus for faces of isotropic sandwich panel 

F( ) function defined by equation (A25) 

Gc shear modulus for core of isotropic sandwich panel 

tf^2 



hc depth of sandwich core 

j,m,n integers 

1 +r 

1 + r 

Nxb2    Nxa2 

kv,kV midplane stress parameters,   —£—,   -£— 
X    X 7T2D 7T2D 

I lateral aerodynamic loading 

M free-stream Mach number 

Mx,My intensity of internal bending moments acting upon a cross section originally 

parallel to the   yz   and   xz   planes, respectively 

Mxy intensity of internal twisting moment acting in a cross section originally 

parallel to   yz   plane or   xz   plane 

m exponent in equations (A6), denotes roots of equation (A9) when used with 

subscript   j 

NY,NT7 intensity of middle plane forces parallel to   x   and   y   axes, respectively x'   y 
(positive in compression) 

P=    r 

Q ,Q intensity of internal shears acting in z-direction in cross sections originally 

parallel to   yz   and   xz   planes, respectively 

1 2 q free-stream dynamic pressure,   -P„V 
2 * 

R - r^2 

77   D 7T2D shear flexibility parameters, 
b2DQ    a2DQ 

S,T coefficients defined by equations (A30) 

s =P '-R 

t time 



tf thickness of sandwich face plates 

V free-stream velocity of airflow 

w deflection of middle surface of plate, measured in z-direction 

x,y,z orthogonal coordinates (see fig. 1) 

a,5,e assumed components of roots of equation (A9) (See eqs. (All)) 

ß = \/M2 - 1 

-     mj 
ßi = — Ml       777? 

coefficient defined by equations (B6) 

Xrjr 
4TT

2
(I - rkj 

C =7 - a 

7] panel length-width ratio,   ^ 

2ob      2oa X,AT dynamic pressure parameters,   ——,     *L 

l-rkx 

ju Poisson's ratio for sandwich panel, defined in terms of curvatures 

i; = y + a 

pa free-stream mass density of air 

pm mass density per unit area of panel 

2       2Nyb2   ^   / «\2       , V 
<p,<p' frequency parameters,   (TJ-)   + n* ——   and   (—f.|   +n 

7T2D 



+ r 

*t V1-^' 

a) panel frequency 

wr,co' fundamental frequency of simply supported panel rigid in shear with an 

infinite length or width, respectively,    -£ ,     ^ D 

Vb4pm  \a?Pm 

square matrix 

column matrix 

Subscripts: 

evaluated at   — = °° 
b 

cr denotes flutter value of parameters 

p denotes preflutter value 

A comma followed by a subscript denotes differentiation with respect to the 

subscript. 

THEORY AND ASSUMPTIONS 

The configuration analyzed is shown in figure 1.  It consists of a flat rectangular 

sandwich panel mounted on simple supports.   The panel core and face materials are 

isotropic; hence, the panel itself is referred to as being isotropic.   The panel has a 

length   a   and a width   b   and is subjected to uniform midplane force intensities   Nx 

and   Nv   (positive in compression).   The supersonic flow at Mach number   M   is over 

the top surface of the panel and is parallel to the x-axis. 

The analysis of the configuration is based on the small deflection theory for flat 

sandwich panels developed in reference 4.   This theory incorporates the effect of shear 

deformations by expressing the total panel curvature in the x- or y-direction and the 

twisting distortion as the sum of the contributions made by each of the internal 



shears (Qx, Qy) and moments (Mx, My, Mxy).   The resulting force-distortion equations 

can be solved for the three separate moments.   Substitution of these expressions for the 

moments into the equations for equilibrium of moments about the x- and y-axes and the 

equation for equilibrium of vertical forces yields three independent equations relating the 

lateral displacement   w   and the two average shear angles   Qx /DQ   and   Qy/DQ.   These 

equations include the in-plane force intensities and the lateral loading.   In the analysis 

presented herein, the lateral loading is comprised of the inertia force and the pressure 

due to supersonic flow (given by two-dimensional static aerodynamics).   In-plane and 

rotary inertia loadings are not considered. 

The boundary conditions imposed are those of simple supports, but inclusion of 

shear effects requires that a third boundary condition be satisfied in addition to the two 

usual conditions of zero moment and middle-surface deflection along the panel edges. 

This third boundary condition depends on the assumption made for the panel support.   If 

the support is applied only to the middle surface of the panel, the boundary condition is 

that   Mxy   must vanish.   If the support is assumed to be applied over the entire thickness 

of the panel the shear angle   QX/DQ   is zero along an edge parallel to the x-axis because 

there is no x-displacement of points at the boundary.    Similarly, the shear angle   Qy/ÜQ 

is zero along an edge parallel to the y-axis.    The last boundary condition (shear angle 

of 0°) is usually the more closely approached in practice and is the one used herein.    The 

exact solutions to the differential equations, subject to the stated boundary conditions, 

lead to a transcendental characteristic equation from which the panel frequencies and 

mode shapes can be determined as a function of midplane loads and dynamic pressure. 

For the type of aerodynamic-force approximation used herein, flutter is known to 

occur only if variations of airflow or panel parameters can force a coalescence of two 

panel frequencies (ref. 6).   The locus of such points forms a flutter boundary that sepa- 

rates a region of stable motion, where all frequencies are real and distinct, from a 

region of dynamic instability where at least one pair of frequencies are complex con- 

jugates.   Details of the exact solution together with a practical procedure for obtaining 

numerical flutter results are presented in appendix A. 

RESULTS AND DISCUSSION 

For a panel of given length or width, the flutter value of the dynamic pressure   q   is 

a function of the length-width ratio   a/b, the bending and shear stiffnesses   D   and   DQ, 

respectively, and the in-plane load   Nx.   For the presentation of results, these variables 

are expressed in terms of nondimensional parameters. 

Numerical results of the analysis are presented in tabular form in tables I and n. 

Table I is for   a/b < 1, where flutter values of the dynamic-pressure parameter 



4 

Xcr = -Ü.   and the frequency parameter   <f>'cr = _HL_ w
2 + -2j—Ny   are tabulated for 

various values of the shear-flexibility parameter   r1 =  \ D     and the stress parameter 

2 , a2°Q 
k^ = —£fL.   The flutter values   Xcr   were obtained by plotting frequency loops (X' against 

TT
2
D 

4>\ see fig. 2) for constant values of r',   kx, and   a/b.   At the peak of the frequency 

loop   X' = X'      and any increase in   X'   produces flutter.   The flutter values of   0' 

associated with   Xcr   incorporate   Ny   and can be used to determine flutter frequen- 

cies   cocr.   As in the case for panels which are rigid in shear, the flutter value of   q   is 

not affected by   Ny.   Table II is for   ^l   and to keep the numerical values of the tabu- 

lated results within reasonable size, the parameters have been redefined in terms of   b. 
4 

2ab3 Prn°      9       b 
Thus, in table n, flutter values of   Xcr = —-— and  cpcr = -^—coz + -y-Ny   are tabulated 

„2n Nxb* 
for values of   r = and   1^ = —^—.   Note that all results are presented in terms of 

b2DQ 7T2D 
the shorter dimension of the panel. Tables I and II also contain values of a parameter a 

which can be used to calculate flutter mode shapes. (See appendix A.) In table n, results 

are not presented for any value of   a/b   greater than that required to produce   Xcr =0. 

The results in tables I and II are presented graphically in figures 3 and 4.   To keep 

these figures within reasonable size,   f*')1/3   is plotted against   a/b   when   0 ^ a/b ^ 1 
1/3 Cr 

and   Xcv     is plotted against   b/a   when   1 % a/b ^ <*>   for different values of the shear- 

flexibility parameters   r', r.   The flutter boundaries appearing in each individual figure 

correspond to different values of the stress parameters   k^, kx.    Figure 4 is for stress- 

free panels with various values of   r'   and   r.   It shows that   X£     is essentially indepen- 

dent of the panel width for   a/b % 1/4   and that   Xcr   is essentially independent of length 

for   a/b = 10.   Figure 4 also illustrates that a significant reduction in   X       can be 

caused by shear flexibility when the panel carries no in-plane loads in the x-direction. 

It should be noted that for   r = 0   (DQ = °°), the panel is rigid in shear and for this case 

the results agree with those of reference 6. 

Effect of Shear Stiffness and Stress on Flutter Boundaries 

Figure 5 illustrates the effect of shear stiffness on   Xcr   for a square panel. 

For a compressive force in the flow direction (kx > 0), the theory predicts that as the 

panel is made less stiff in shear (r   increasing),   Xcr   will decrease.   The same result 

holds for the stress-free panel.   However, when the panel is in tension (kx < 0), there are 

cases when theory predicts that a panel which is flexible in shear (r > 0) will flutter at a 

higher value of   Xcr   than a panel of the same geometry which is rigid in shear (r =0). 

7 



For example, when   1^ = -4, it is seen that after a slight initial decrease,   Acr   increases 

steadily as the panel becomes more flexible in shear.   At   r = 2,   Xcr = 1230   which is 

over one-third larger than the   r = 0   value of   Xcr.   That an increase in panel stiffness 

can lower   Acr   is an unexpected theoretical result.   Whether such a physical phenomena 

does actually occur or whether the theory employed does not accurately represent the 

panel behavior under certain combinations of shear stiffness and tensile loading is not 

known.   Consequently, such results should be regarded cautiously until refinements in the 

theory (for example, consideration of rotary inertia) or experimental evidence either con- 

firm or refute this anomalous behavior. 

The analysis presented in appendix A is based on the criteria that flutter occurs 

when two panel frequencies coalesce.   Any circumstances that cause two in-vacuo fre- 

quencies to coincide will then produce, by this definition, flutter even though the dynamic 

pressure approaches zero.   Inclusion of either aerodynamic or structural damping in 

theoretical flutter analyses of panels which are rigid in shear has been shown to remove 

these zero-dynamic-pressure flutter points (ref. 5); the resulting theoretical flutter 

boundaries, however, still do not compare well with experimental boundaries.   Thus, to 

gain an idea of conditions for which the theoretical results can no longer be considered 

reliable, it is important to know the combinations of   r,   kx, and   a/b   which produce 

zero-dynamic-pressure flutter points.   These combinations can be determined from the 

in-vacuo vibration characteristics of the panel as described in appendix C.   The primary 

results are shown in figure 6.   When   kx =   2 + r   ,    Acr   approaches zero as   a/b 
(1 + r)2 

approaches infinity.   If   kx   is greater than 0, then   Xcr   goes to zero at values 
(1 + r)2 

of   a/b   given by equation (C5) in appendix C.   If   kx   is less than r 0, then   XCr 
(1 +r)z 

never reaches zero but has a finite asymptotic value as   a/b   approaches infinity. 

Comparison of Exact Results With Approximate Solutions 

Modal solution.- Development of the exact solution provides an opportunity for 

evaluating the approximate two-mode Galerkin solution of reference 2.   A comparison of 

flutter boundaries is shown in figure 7 for stress-free panels.   Note that the two-mode 

solution becomes less accurate as   r   increases.   Also, as in the   r = 0   case, it becomes 

less accurate as   a/b   increases.   At   a/b = °°, the two-mode solution predicts that 

Xcr = 0. 

An explanation for the growing inaccuracy of the two-mode solution with increasing 

shear flexibility is indicated by the exact flutter mode shapes for square stress-free 

panels shown in figure 8.   (These shapes were calculated (from eq. (A29)) by using the 
values of   a   given in tables I and II.)   As the panel becomes weaker in shear, the point of 

8 



maximum amplitude moves toward the trailing edge of the panel.   Thus, it would be 

expected that the representation of the true mode shape by only two terms in a sine series, 

as was done in reference 2, would lead to increasingly inaccurate results as   r   increases. 

Preflutter solution.-In reference 7, a solution to the differential equation of motion 

for simply supported panels that are rigid in shear was made and it yielded simple alge- 

braic expressions for X and <fi. This solution corresponds to a point on the frequency 

loop which is not necessarily at the peak; thus, a value of X is given which is less than 

or equal to Xcr, hence the name "preflutter." When transverse shear effects are con- 

sidered, it is found that a simple preflutter solution still exists (appendix B), even though 

two additional differential equations and an additional boundary condition must be satisfied. 

As can be seen from figure 9, which is for stress-free panels, the preflutter solu- 

tion gives values of   X   that are very close to   Xcr   when   a/b   is sufficiently large.    For 

small values of   a/b   the preflutter solution is often in poor agreement with the exact so- 

lution.   Its behavior is typical of that shown in figure 10 which is for   r = 2.0.   When 

a/b = 1, the preflutter solution corresponds to a point low on the second leg of the fre- 

quency loop.   As   a/b   increases, this point moves along the second leg until at  a/b = 4 

it is nearly at the top of the frequency loop and is thus virtually identical with   X    .   As 

a/b   continues to increase, the preflutter point moves to the top of the loop (becoming 

exactly equal to   Xcr) and then starts down the first leg.   Once on the first leg, however, 

it stays relatively close to the top of the loop, and thus gives a close approximation to 

Xcr. 

For increasingly large values of   a/b, it becomes more difficult to obtain numerical 

results from the exact solution for   Xcr.   Hence, it is desirable to be able to use the sim- 

pler preflutter solution in the range where it agrees closely with the exact solution. 

Table III shows a comparison of the preflutter solution with   Xcr   at   a/b = 20   for the 

values of   r   and   kx   which are presented in table II.   In all cases the solutions differ 

by less than 2 percent.   Thus, the preflutter results used in table II and in figures 2 and 3 

for   a/b > 20   are justified as being good approximations to   Xcr. 

CONCLUDING REMARKS 

Charts have been presented to facilitate the determination of theoretical values of 

the dynamic pressure required to produce flutter of flat rectangular isotropic sandwich 

panels with simply supported edges.   The flutter value of the dynamic pressure for a 

panel of given length or width is found to be a function of the length-width ratio, the 

bending and shear stiffnesses, and the in-plane load acting parallel to the airflow.   It is 

independent of the in-plane load acting perpendicular to the airflow as long as buckling 

does not occur. 



The theory predicts that a reduction in transverse shear stiffness usually causes 
a panel to be more susceptible to flutter.   An unusual result is obtained for panels which 
carry tension loads in the direction parallel to the airflow.   In these cases it is theoret- 
ically possible for a reduction in shear stiffness to make a panel less susceptible to 
flutter.   However, this result should be regarded cautiously since at present there is no 
experimental evidence available with which to compare such theoretical behavior. 

A comparison is made between the exact solution for the flutter dynamic pressure 
and two approximate solutions.   A two-mode Galerkin solution is shown to become 
increasingly inaccurate as a panel becomes more flexible in shear.   A relatively simple 
preflutter expression is found to give results that are in good agreement with the exact 
solution for sufficiently large length-width ratios. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., November 8, 1965. 
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APPENDIX A 

EXACT SOLUTION FOR THE SUPERSONIC FLUTTER 

BEHAVIOR OF SANDWICH PANELS 

Differential Equations 

The small-deflection equilibrium equations used herein to represent the behavior of 

a sandwich panel are derived in reference 4 by use of the following force-distortion 

equations which relate moments   Mx, My, Mxy, shears   Qx, Qy, and displacement   w: 

Mx = -D 

My = -D 

JLfe - S*\ + M JL(?E - SJL 
dx\dx     DQ 

Q 

+ p- 
9y\9y    DQ 

±(dw 5z\    j_(dw Qx\ 
3y\3y  " DQ/

+
 ^ dx\dx     DQ/ 

(Al) 

MXy = ^D 
3 fdw    Qy\      9 fdw    Qx 
ax\ay " DQ/     ay\3x " DQ// 

where the bending and shear stiffnesses as given in reference 8 are 

t£x2 

D = 

Eftfhc (l + £J        Eftf3 

DQ = Gchc 

2(l -Mf 6(l -if 

k4 
(A2) 

respectively, and   ju.   is Poisson's ratio.   The assumptions involved in equations (Al) 

require that a straight line perpendicular to the undeformed middle surface of the panel 

remain straight and of constant length after deformation but not necessarily perpendicular 

to the deformed middle surface.   This inclination in the   x- (or y-) direction from a right 

angle is the average shear angle 
Q 

D, 
x or 
'Q 

SL] 

The lateral aerodynamic pressure given by static linearized two-dimensional super- 

sonic flow theory is 

where   q = - paV^   is the free-steam value of the dynamic pressure and   ß = \M   - 1. 
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APPENDIX A 

Substituting the above expression for   I, together with the lateral inertia loading, into the 

three equilibrium equations of reference 4 yields 

2q. 
-Nxw,xx - Nyw,yy + Qx,x + Qy,y - Pm

w,tt - Jw,x = o 

-w Qx    i 
)Xyy-w,xxx-—+ ö^ 

r -w -Sl + J- 
,xxy       ,yyy     D      DQ 

s^^k^lH-^ ,xy 
= 0   > (A4) 

Q„    + i^k y,yy     \   2   y^Y,xx ♦ M* ,xy 
= 0 

where   p      is the mass per unit area of the panel and   Nx   and   Nv   are positive in m 
compression. 

Satisfaction of Boundary Conditions Along the Streamwise Edges 

For the simply supported edges parallel to the x-axis at which the support is 

applied over the entire thickness, the boundary conditions are (see ref. 4) 

w = 0 

My = 0 

Q, 
D, 

= 0 
'Q 

(A5) 

General product solutions for the lateral deflection and the shears which satisfy 
these boundary conditions are 

-x 
w(x,y,t) = Ae   asin mr ^ eiwt 

b 

—x m- 
Qx(x,y,t) = Be   asin mr £ eiwt 

-—X 

Qv(x,y,t) = Ce   acos mr I ei^t J b 

(A6) 

where   n   is an integer indicating the number of sinusoidal half-waves in the y-direction 

and   w   is the panel frequency.   The expressions for   w,   Qx, and   Qy   also satisfy the 
differential equations (A4) provided that 

12 



APPENDIX A 

f f V - f) 

m 
77 

-n 

-772 + r m
2 1 " <Vn2r 

m/1 + ju nr 

m/1 + \x nr 

-(1 + A) + Msf 
_2 
m 

r      -\ 

A 

/ab2 

7T3D 

a2b( 

7T3D 

B >=< °> 

where 

(A7) 

"5 

kY = 

r = 

X = 

TT
2
D 

7T2D 

b2DQ 

2qb3 

15" 

N,7b
2 

2D 

co 2 _ jr_P_ 
b Pm 

(A8) 

Nontrivial solutions are obtained by equating the determinant of the matrix in equa- 
tion (A7) to zero.   Expanding this determinant leads to 

(m4 - 4yfn3 + ^Am2 + Xm - ^ 1 - S^I^fjsl - TJ
2
) 

7?2 \   2   /\7r2n2        / 
= 0 (A9) 
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APPENDIX A 

where 

Ä77r 

4TT
2
(1 - rkx) 

1 = T^S" "2n2 + r(n2kx + 4 
1 + n2r 

X = X77c 

1 - rk, 

B rr 
1 - rK 

0(1 + n2r) - n 

(A10) 

If the roots of equation (A9) are written in a form similar to that used in refer- 

ence 6, 

m 1 = y + a + iö 

m2 = y + a - iö 

mß = y - a? + e 

m^ = y - a - e 

m§ = irrin 1 + 
(1 - ßW 

1/2 

m6 = -m5 

(AH) 

they can be related to the coefficients in equation (A9) as follows: 

6y2 - 2c? + Ö2 - e2 = TT
2
A (Al 2 a) 

14 



APPENDIX A 

2a(ö2 + e2) - 1y 52_c2 e" + 2(r2 _ J) = X (A12b) 

y4 + y2(52 _ e2 _ 2a2) - 2ay(e2 + ö2) + (a2 - e2)(«2+ ö2) = -TT
4
B (A12C) 

For computational purposes it is convenient to solve equations (A12a) and (A12b) 

for   6   and   e. 

52=±-+a2+lA- n2y2 + 3ya - TT
2
£ 

4a 2       "\ 2 

e2=]L-a2-^-42y2-3ya-7r^ 
4a 2       <*\ 2 

(A13) 

It should be noted that   Ö2   and   e2   could be negative and this possibility was allowed 

for in the calculations by taking into account any imaginary quantities that appear.   How- 

ever, for the ranges of parameters covered in the calculations,    6   was real for any 

point on the frequency loop and   e   was real except at sufficiently high axial compression 

where   e   became imaginary.   Using these relations to eliminate   Ö   and   e   from equa- 

tion (Al2c) yields the following cubic in   a2 

«6- D1a
i+D2a

2 - D3 = 0 (A14) 

where 

Dl = 3y2 - ^ 1 2 

D2=(2y2-^)   + l(„4B - ,*) - y4   j> 

2 _ ^A D3 = | - y\y 

(A15) 

Equations (A13) and (A14) provide a procedure for obtaining numerical values of   X   once 

the boundary conditions at   x = 0   and   x = a   are satisfied. 
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APPENDIX A 

Satisfaction of Boundary Conditions Along the Leading and Trailing Edges 

For the simply supported edges parallel to the y-axis at which the support is 

applied over the entire thickness, the boundary conditions are the same as those given by 

equations (A5) if   y   and   x   are interchanged.   Before the boundary conditions can be 

applied to the solutions given by equations (A6), it is necessary to express   w,   Qx, and 

Q     in terms of one set of coefficients (that is, either   A,   B, or   C).   The coefficient   A 

can be eliminated from the second and third rows of matrix equation (A7).   The result is 

77Bj- nw   3 
= 0 (A16) 

When   j   equals 5 or 6, the first bracketed term is equal to zero (eqs. (A9) and (All)) and 

no information is obtained about the relationship between   B-   and   C-.   However, when 

j = 1, 2, 3, 4, the first bracketed term is not, in general, equal to zero.   Therefore, 

c.i -—BJ (j = l, 2, 3, 4)    (A17) 
mi 

Replacing   Cj   with   -rz-Bj  in the third row of equation (A7) gives 

1 

Ai = 
7r2r?2 + r \p2n%rfl - mj J. 

m;7r2 (77^2772 - nij2j 
ab S-.Bj       (j = l,2,3,4)    (A18) 
D J 

If   Cj   is eliminated from the first and second of equations (A7), it is found that 

mJ2. ^2 _ X7]mj -kx—Y+ Qv 
TT4 2     /   77 H\vi 

im.r      m4/m42 

r2 '/ 7T3D 

n2r/l - /VmJ2      „2\ 
V2 \   2     \n27T2 

Bi 

(A19) 

Again, the bracketed term before   Bj   is zero for   j   equal to 5 or 6.   The coefficient 

of   Aj   is not, in general, equal to zero and therefore 

A5 = A6 = 0 (A20) 

Thus, for   j   equal to 5 and 6, the first of equation (A7) gives 

C, = _ mi 
]       nT77T     ] 

(A21) 
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Use of these relations enables equations (A6) to be written in terms of   Bj   alone as 

follows: 

•U^nPrfi - m-j2j ^2^2 + r|7r2n27y2 _ m.2 

mj7T2(7r2n2?72 - nij2) 

"\ 

,2      m£ 
^-Bie   Jasin mlgicot 
D     J b 

6        m-£ 
Bie  

]asinn7r^eicot 
J b 

Qy = ^B,0
mil+Y^iS,emji I < "je l_,Tinri   J 

j=5 

cos n^ei^t 
b 

(A22) 

Substituting the above expressions for   w,   Qx, and   Qy   into the boundary con- 

dition equations yields 

1      -+rV 1      . + rV1 1    +&    MIEH-1 
„2.^3     Jß1 ^n2-ß22      )-ß2 \n2-ß3Z      ) ß3        \n2 - ßi 

™2       /      , \=
m3 i   r+r\£i   (^i^+r)^ n2 - ß^       I ~ßl [n2 . ^2      j -ß2 ^n2 . ^2      j ^ ^n2 . 3 ,2_Ä 2 

-01 
n2 - ßi2 

-ßie 

n2 - ßi2 

h 

mi 

*>1 

-02 

n2 - /32
2 

-/33e 

n2 - ß2
2 

ßi 

Ae™2 

02 

-03 

n2 - ß3
2 

-ß3e 

n2 - ß3
2 

-2-e   3 

^3 

n2-04
2 

n2 - Al2 

JL,m4 

^4 

0 0 

0 0 

r%       r% 

rß5em5       rß6era6 

ß5e   5 /36e   b 

n n 

where   /3j = ^ 

(A23) 
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The nontrivial solution for the deflected shape of the panel is obtained by equating the 

determinant of this matrix to zero.   By manipulating rows and columns, additional zeroes 

can be introduced into columns 5 and 6 of this determinant so that it becomes 

1 

mi 

mi 

9 m 
m-^e 

m2 TO.'- 

1 

m<- 

_ p mo 
m?>   2 

m. 

m32' 
111! 

1 

m4 

— 2 m4 

- 2 m4 m4^e   4 

= 0 (A24) 

2) sin ö sinh e 

Note that equation (A24) is independent of the roots   m5   and   mg.   It is mathematically 

the same as for a panel which is rigid in shear except that the roots   TiTj   are functions 

of the shear stiffness.   (See eqs. (All), (A10), and (A8).)   Expanding equation (A24) and 

replacing the roots   mj   with the expressions given by equations (All) yields. 

F(a,ö,e,y) =   (ö2 + e2)   + 4a2 (ö2 - e2) + 4y2(4a2 + Ö2 - e' 

-85e(a2 - y2)(cosh e cos 6 - cosh 2a) = 0 (A25) 

Equation (A25) reduces to equation (9) of reference 6 when   y   equals zero (infinite trans- 

verse shear stiffness). 

Relations (A10), (A13), (A14), and (A25) are 8 independent equations involving 13 

quantities (r, kx, 77, c/>, n, X, X, A, B, y, a, 5, e).    For simple supports these equations 

constitute the solution to equations (A4) once 5 of the 13 quantities are specified. 

The differences between the results of the analysis presented herein and the results 

of reference 6 are due to the parameter   r.   In figure 11, some of these differences are 

illustrated by showing the relation between the frequency loops and the functions   A 

and   B   which are defined by equations (A10).   Regardless of   r,   X   reaches the value 

Xcr   when two of the frequencies of the panel coalesce.   An increase in   X   above   Xcr 

causes   w2   to become complex.   Thus, one of the two square roots of   w2   must possess 

a negative imaginary part which by equation (A6) is associated with divergent motion or 

flutter. 

When   r   is zero (infinite shear stiffness), the expressions for   A   and   B   reduce 

to the definitions in reference 6.   In this case   A   is not a function of the frequency 

parameter   0   and depends only on   n,   77, and   1^.   The frequency loops (variation of   X 

with   cp) then lie in planes of constant   A   and   Xcr   is a function of   A   only.   Hence, 

differing panel configurations with the same value of   A   but with different combinations 

of   77   and   kjj.   will all theoretically flutter at an identical value of   Xcr.   For   r   greater 
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than zero (finite shear stiffness),   A   is no longer independent of   0.   As a result, the 

frequency loops are rotated out of the constant   A   planes by the angle 

n=tan-1lA^ (A26) 
1 + r 

In this case   n,   r\, and   kx   do not form a single parameter determining   Xcr. 

Two additional effects of nonzero   r   can be seen from figure 11.   One of these is 

that the frequency loop tends to bend over in the direction of increasing frequency.   As 

r   increases, this effect becomes more pronounced.   The second feature is that for 

X = 0   (no airflow), the natural frequencies of the panel are reduced in magnitude as   r 

is increased. 

Procedure for Obtaining Numerical Values From Exact Solution 

Since the flutter value of   X   is sought for a given panel configuration and midplane 

stress condition, it is desirable to specify   r,   kx, and   rj.   If   n   and the frequency 

parameter   0   are then prescribed, the remaining eight quantities can be determined. 

This process enables one to obtain the variation of   A   with   0   for fixed values of the 

length-width ratio and stress and shear-flexibility parameters. 

A practical procedure for obtaining flutter values of   X   for selected values of   r, 

kx,   ?7,and   n   is as follows: 

(1) Select   0, a good choice being a value midway between the first and second in- 

vacuo values of   0   (see appendix C). 

(2) Calculate   A   and   B   from equations (A10). 

(3) Make an initial estimate for the correct value of   X.   Calculate corresponding 

values of   X   and   y   from equations (A10). 

(4) Solve equation (A14) for   or.   The Newton-Raphson technique works very well 

since only one real root of equation (A14) was found to exist when the estimated value 

of   X   was close to the correct value. 

(5) Calculate   Ö   and   e   from equations (Al3). 

(6) Use equation (A25) to calculate   F(a,5,e,y), a nonzero value meaning an 

incorrect choice of   X. 

(7) Repeat steps 3 to 6 until a value of   X   is found that differs from the correct 

value (that is, F(a,5,e,y) = Ö) by only an acceptable amount.   (An allowable error in 
X   of 0.01 percent was used in calculating the results presented herein.) 
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(8) Increase   <p   and repeat the process until the point   — = 0   is obtained. 

When the numerical results presented in this report were obtained, the increments in   0 
were taken small enough to assure that the values of   Xcr   were in error by no more 
than 1 percent.   In most cases they are correct to 0.1 percent.   In all cases, calculations 
show that the critical flutter solution is obtained by setting   n = 1   and determining   Xcr 

from the coalescence of the two lowest frequencies. 

Panel Mode Shape 

The lateral deflection can be obtained from the first of equations (A6) once the 
coefficients   Aj   are known.   These coefficients can be determined from equation (A23). 
If, in equation (A23),   n   is set equal to 1 and rows 5 and 6 are multiplied by   r, and 
row 5 is subtracted from row 3 and row 6 is subtracted from row 4, the coefficients of 
B5   and   Bg   appearing in rows 3 and 4 can be made equal to zero.   Then, replacing   B; 

with   I?2^Aj   for   j = 1, 2, 3, or 4, where 
b5 

*i 

and recalling that   A5 = Ag = 0   yields 

vi-ßj ,2 
+ r (A27) 

1 

eHl 

*1 

i^e 
mi 

1 1 1 

m2 ino 
e   6 e™4 

h ^3 ^4 

mo 
e   l mo 

^3e 

nü 
^4e   4 

rk\ t^\ 

)={ 

0 

(A28) 

By a corrollary to Cramer's rule (ref. 9), the coefficients   Aj   can now be determined 
within an arbitrary constant.   Substituting the expressions for   Aj   and the expressions 
for   m"j   given by equations (All) into equation (A6) and ignoring the arbitrary constant 
yields, after considerable manipulation, 
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g 
e    cos ö£ - e    cosh e- 

a. et w(-^ = -Te^sinh e + (1^3 - i/z^e^sin 6 

+ Se^sinh e + (1^3 - i^e^cos 5 + i/^e^-6 - i^e^4"6 

where 

e  asin ö # 

+ -Te^cosh e + (1^3 + xjy^e^sm ö + e^(T cos ö - S sin ö) e asinh e| (A29) 

ij = Y + a 

£ =y - a 

P3 = 

\i-m 
+ r 

n  + r 
1 - (IzJf 

S       (1 + r)A4 + r(g2 + 52)2 _ ^2{1 + 2r)(^2 . 62) 
2 9 

(1 + r) V r?4 + r2(^2 + 62)   - 2772?72r(l + r)(|2 - ö2) 

T = 
-47T2?7245 

V (A30) 

(1 + r)27T4??4 + r2(^2 + ö2)    - 27T2??2r(l + r)(^2 - S2) 

The flutter mode shapes for   w   presented in figure 8 were obtained from equation   (A29) 

by using the values of   o^j.   in tables I and II. 
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PRE FLUTTER SOLUTION 

From equation (A25) it is seen that the transcendental equation F(a,5,e,y) = 0 is 

satisfied identically when e = 2a and ö = 2rmr where m is an integer. (This same 

relationship was noticed in reference 7 for panels which are rigid in shear, and leads to 

the so-called "preflutter" solution.) Substituting these expressions for e and ö into 

equations (A12) and setting   m = 1   yields the following expression for   X 

7]-3     3 
10 - A + 6[ \} _, 

4-1   -2 @"2©-8f (Bl) 

(Setting   m = 1   restricts the preflutter solution to a point on the first frequency loop.) 

If the panel is rigid in shear (r = y = 0), the following preflutter equations for   X   and   B 
are obtained 

=i)3M 
-       Mr,       OT\   .   A 

71 M - A 

B=fl7-2AJ+12 

(B2) 

where  A = T?2(kx - 2) is now independent of the panel frequency.   As noted in reference 5, 

the first of equations (B2) yields values of   X   that are very close to   Xcr   when   A   is 
negative.   (See fig. 9.) 

For r + 0, preflutter values of X are not so easily obtained since it is not 

possible to solve for X as an explicit function of r, 77, and kx. However, it is 

possible to write equation (Bl) in terms of r, 77, and A by replacing £ with 
X /r/?72N 

4TT
1 3U + r, 

.   (See eqs. (A10).)   The result is 

-\2 
x 

T.P21A-6O)(A-4) 1 + RA - R 
12 

T    D2(A-60)(A-4 
1 + RA - R 

12 
- (|R) (1+4R)(IO-A)

2
(4-A) 

R
C 

(l + 4R) 

(B3) 
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where 

R = 
v/ff 

1 + r 

Thus, if   r,   t], and   A   are specified,   A.   can be calculated.   (Note that   A   is a function 

of the unknown frequency parameter   <fi.)   Since   X 
CK 

is known,   ^   can be determined from 

equations (A10); and then   -   and   B   can be obtained from equations (A12).   The stress 

parameter   kx   is obtained by eliminating   <p   from the expressions for   A   and   B 

given by equations (A10): 

kv = 

,2 2 + r 
+ r +(i- RB) 

v2d + r) + r(X - RB) 
(B4) 

Finally,   X   is determined from the third of equations (A10).   It should be noted that for 

fixed   r   and   r\,   k^.   cannot be specified arbitrarily since it is determined by the choice 

of   A   used in equation (B3).   Thus, trial-and-error calculations involving different 

choices of   A   are necessary to obtain   X   for the   kx   of interest. 

The preceding preflutter equations can be used for infinitely long panels by letting 

r\   approach   °°.   This condition leads to the following expressions for   X   and   kx: 

1 + r 

(B5) 

23 



APPENDIX B 

where 

/B\   _ (pr)4   (PD
2
/A 

Woo"     8      "     4     ^2 
2|/2(pr) ipni.ifA' 

6 V?2/ 

3/2 'I\2 
12

\r72; 

r = 
-2  \      (12 + 12s - S2) ± i/l44 + 288s + 120s2 + ^ s3 + s4 

6^6 12T? 
D

TT' 

1 + r 

12P1 

s =P- 

J 

(B6) 

Thus, by specifying   r   and   —,   X   and   k^   can be calculated for   7] = °°. 
??2 _ 

A 
An interesting solution occurs when   — = 0.   If the negative root is used to cal- 

culate   T,    r = [-S.)    =0.   Hence, 
\nVoo 

kx = 2 + r 

(1 + r)J 

X = 0 

(B7) 

That is, as   1^   is increased to the value 2 + r 

(1 + vY 
■, the preflutter value of   X   for an 

infinitely long panel drops to zero.   It is shown in appendix C that   Xcr   also goes to 

zero as   k^   approaches 2 + r 

(1 + r)< 
when   r\ - °°. 
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PANEL BEHAVIOR FOR ZERO DYNAMIC PRESSURE 

The natural vibration characteristics of the panel can be obtained for zero dynamic 
pressure by setting   X = X = y = 0.   Then by equation (A14),   a   is also equal to zero. 
Equation (A25) reduces to   (e2 + ö^) sin ö sinh e = 0   so that 

Ö = m7T (Cl) 

where  m is an integer designating the number of sinusoidal half-waves in the x-direction. 

From equations (A12) and (Cl), it is readily verified that    e^ =ii—i±   and 
i2 

:2   -V   B 

m^ 

B = m2(m2 - A) (C2) 

Equations (C2) and (A10) lead to 

4> . [(f)2-s 

1 ♦ {(f)2 * ■' 
W* (C3) 

Use of the expression for   <p   as given by equation (A8) enables the in-vacuo natural fre- 
quencies to be expressed as 

hf + °aT 
1 + r F-2] W Nv 

kx (C4) 

Equation (C4) can be used to calculate the in-vacuo buckling loads by equating the fre- 
quency to zero. 

In the analysis presented in appendix A, it is assumed that flutter occurs when two 
frequencies of the panel coalesce or become equal.    For certain values of the stress 
parameter   kx, two of the panel's in-vacuo natural frequencies become equal.   This con- 
dition occurs whenever two consecutive mode lines cross one another as in figure 11 
(that is, eq. (C2) is satisfied by two consecutive integer values of   m).   The numerical 
calculations which were made indicate that   Xcr =0   at these points; that is, the frequency 
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loop degenerates to a point.   The combinations of   r,   kx, and   77   which produce these 

theoretical zero-dynamic-pressure flutter points can be determined by using equation (C3) 

to eliminate   <fi   from the expression for   B   given by the last of equations (A10).   Using 

the in-vacuo relation between   B   and   A   (eq. (C2)) then leads to 

2 + r 

(l + vy 
21T1 - rk- 

1 + r 
» + rBizJ*£.0 

1 + r 
(C5) 

This equation gives the zero-dynamic-pressure flutter points in terms of   r,   1^, and 

t].   The values of   A   and   B   to be used are those for which equation (C2) is satisfied 

by two consecutive integer values of   m.    (The first zero-dynamic-pressure flutter 

point occurs at   A = 5.)   (See fig. 6.) 
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TABLE I.- FLUTTER SOLUTIONS FOR PANELS WITH LENGTH-WIDTH RATIOS LESS THAN ONE 

a/b 

xcr ^cr acr xcr *cr «cr xcr *cr acr *cr *cr <*cr 

k^=-4 ki = -2 K=-1 k^ = 0 

0.0 696.5 25.25 3.495 512.5 17.70 3.024 425.8 14.00 2.774 343.4 10.79 2.477 0.00 

.2 704.0 25.51 3.516 519.5 17.95 3.047 432.8 14.55 2.777 349.8 10.99 2.506 

.4 727.9 27.01 3.540 541.1 19.08 3.091 453.3 15.62 2.826 369.3 12.12 2.552 

.6 766.9 29.18 3.600 577.4 20.87 3.176 488.0 16.96 2.944 402.0 13.00 2.708 

.8 822.3 31.36 3.742 629.0 23.32 3.305 537.6 19.34 3.080 449.8 15.88 2.814 

ki = -4 ^ = -2 ** = -! k^ = 0 

0.0 707.5 28.11 3.168 496.8 18.27 2.859 398.5 13.74 2.668 306.0 9.929 2.407 0.05 

.2 715.4 27.74 3.228 503.1 18.52 2.881 404.3 14.47 2.652 311.3 10.13 2.433 

.4 737.0 29.07 3.259 522.0 19.15 2.953 422.1 15.12 2.727 327.6 11.06 2.483 

.6 772.6 30.31 3.368 553.9 21.02 3.021 451.6 16.51 2.826 354.8 12.49 2.581 

.8 823.6 33.54 3.445 598.5 23.38 3.138 493.0 18.48 2.969 393.2 14.48 2.723 

14 = -4 ki = -2 kk=-1 ki = 0 

0.0 752.6 32.91 3.094 478.8 19.72 2.816 352.9 13.63 2.643 236.8 8.486 2.383 0.20 

.2 759.4 33.58 3.103 483.9 19.85 2.845 357.4 13.96 2.659 240.5 8.682 2.407 

.4 779.1 34.61 3.166 499.4 21.03 2.889 370.7 14.77 2.717 251.5 9.237 2.482 

.6 811.6 36.92 3.247 524.8 22.56 2.986 392.4 16.14 2.813 269.5 10.37 2.585 

.8 855.8 39.96 3.367 559.3 24.77 3.118 422.1 18.00 2.952 294.2 12.08 2.718 

ki = -4 kk = -2 ki = -l 1^ = 0 

0.0 811.4 40.47 3.445 478.8 22.16 3.104 326.3 14.37 2.860 187.1 7.242 2.549 0.40 

.2 817.9 40.59 3.475 483.3 22.65 3.122 330.0 14.49 2.892 189.8 7.610 2.557 

.4 836.7 41.83 3.547 497.0 23.37 3.203 340.8 15.21 2.967 197.7 8.030 2.645 

.6 868.2 44.65 3.658 518.9 25.11 3.316 358.0 16.51 3.083 210.3 8.990 2.763 

.8 909.1 48.62 3.802 548.3 27.48 3.470 381.1 18.37 3.238 227.0 10.20 2.934 

k^=-4 k^ = -2 k^=-l k^ = 0 

0.0 947.3 57.87 4.814 507.8 28.95 4.319 304.9 16.33 3.916 121.8 5.720 3.221 1.00 

.2 953.5 58.22 4.846 511.8 29.38 4.352 307.6 16.58 3.951 123.2 5.856 3.255 

.4 972.8 60.60 4.943 523.5 30.42 4.451 315.6 17.29 4.050 127.4 6.221 3.358 

.6 1003 63.84 5.095 542.1 32.31 4.606 328.3 18.59 4.208 134.0 6.816 3.521 

.8 1042 67.91 5.292 566.3 34.84 4.808 344.8 20.28 4.413 142.6 7.689 3.730 

k^-4 k^-2 K = -1 1^ = 0 

0.0 1093 79.02 6.154 556.8 37.78 5.644 306.6 19.56 5.183 81.14 4.431 4.135 2.00 
.2 1100 79.92 6.191 560.5 38.25 5.682 308.9 19.88 5.222 81.96 4.522 4.176 

.4 1119 82.42 6.299 571.3 39.66 5.791 315.6 20.55 5.334 84.28 4.808 4.292 

.6 1148 86.59 6.465 588.4 41.69 5.964 326.0 21.88 5.510 87.98 5.189 4.479 

.8 1187 91.65 6.682 610.1 44.52 6.183 339.3 23.53 5.734 92.65 5.759 4.714 
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TABLE I.- FLUTTER SOLUTIONS FOR PANELS WITH LENGTH-WIDTH RATIOS LESS THAN ONE - Concluded 

a/b 

Xcr ^'cr «cr xcr <*>cr «cr x'cr *cr aCT xcr ^'cr <*cr 
r' 

k^=l k^ = 2 k^ = 3 14 = 4 

0.0 264.9 7.400 2.174 190.9 4.400 1.807 121.8 1.350 1.390 57.98 -1.400 0.8248 0.00 

.2 271.0 7.834 2.185 196.7 4.626 1.840 127.2 1.618 1.424 62.88 -1.190 .8785 

.4 289.5 8.554 2.270 214.1 5.338 1.934 143.4 2.348 1.532 77.80 -.5094 1.027 

.6 320.9 9.818 2.406 243.6 6.546 2.088 171.1 3.616 1.703 103.4 +.6876 1.250 

.8 366.1 12.25 2.550 286.4 8.822 2.256 211.2 5.610 1.918 140.7 2.566 1.520 

14 = 0.9 14 = 1.859 1^ = 2.7 kj, = 3.6 

0.0 227.8 6.506 2.144 150.9 3.401 1.760 89.33 0.7496 1.334 30.50 -1.804 0.6333 0.05 

.2 232.9 6.859 2.157 155.4 3.585 1.794 93.34 .9243 1.375 33.97 -1.637 .6937 

.4 247.8 7.620 2.224 168.8 4.272 1.876 105.4 1.544 1.481 44.47 -1.107 .8617 

.6 272.8 8.655 2.362 191.5 5.404 2.015 125.8 2.497 1.663 62.33 -.1511 1.106 

.8 308.3 10.80 2.491 223.7 7.057 2.203 155.0 4.149 1.872 87.99 1.330 1.393 

14 = 0.7 1^=1.4 14= 1.528 14 = 2.1 

0.0 162.5 5.096 2.155 95.58 2.261 1.798 84.27 1.736 1.723 38.05 -0.1841 1.192 0.20 

.2 165.7 5.323 2.174 98.15 2.379 1.834 86.76 1.911 1.748 40.01 -.0443 1.229 

.4 175.0 5.812 2.254 105.8 2.877 1.913 94.12 2.330 1.843 45.92 .3000 1.361 

.6 190.4 6.805 2.365 118.5 3.655 2.053 106.3 3.152 1.975 55.69 .9585 1.547 

.8 211.5 8.132 2.527 135.9 4.826 2.232 122.9 4.296 2.159 69.16 1.914 1.786 

14 = 0.5 14 = 1.0 14 = 1.224 14=1.5 

0.0 124.6 4.416 2.301 68.40 1.829 1.963 45.98 0.8732 1.725 21.62 -0.1593 1.273 0.40 

.2 126.7 4.504 2.336 70.02 1.992 1.982 47.34 .9808 1.756 22.67 -.0860 1.322 

.4 133.0 4.972 2.412 74.76 2.324 2.074 51.36 1.281 1.855 25.78 .1730 1.445 

.6 143.2 5.703 2.542 82.41 2.882 2.222 57.87 1.790 2.013 30.81 .5998 1.642 

.8 156.7 6.818 2.706 92.67 3.733 2.407 66.60 2.566 2.207 37.62 1.270 1.871 

14 = 0.25 k^ = 0.50 k^ = 0.75 k^ = 0.80 

0.0 81.17 3.526 2.934 44.12 1.637 2.530 12.88 0.1550 1.801 7.824 -0.0650 1.518 1.00 

.2 82.27 3.642 2.968 44.88 1.702 2.567 13.28 .2079 1.836 8.143 -.0232 1.565 

.4 85.48 3.905 3.074 47.08 1.908 2.674 14.43 .3378 1.964 9.074 .1042 1.696 

.6 90.53 4.392 3.237 50.54 2.262 2.841 16.25 .5816 2.143 10.54 .3224 1.894 

.8 97.08 5.071 3.448 55.03 2.772 3.054 18.59 .9270 2.373 12.43 .6306 2.146 t 

14, = 0.125 kjj = 0.25 14 = 0.375 14 = 0.4444 

0.0 56.42 2.918 3.848 33.28 1.576 3.436 12.68 0.4588 2.724 3.369 0.0000 1.879 2.00 

.2 57.05 2.994 3.889 33.71 1.622 3.479 12.90 .4796 2.772 3.476 .0217 1.929 

.4 58.85 3.187 4.010 34.95 1.769 3.602 13.55 .5854 2.892 3.785 .0889 2.068 

.6 61.65 3.518 4.197 36.86 2.007 3.792 14.57 .7337 3.093 4.260 .2030 2.277 

.8 65.21 3.963 4.434 39.29 2.323 4.034 15.84 .9466 3.342 4.860 .3643 2.538 
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TABLE n.- FLUTTER SOLUTIONS FOR PANELS WITH LENGTH-WIDTH RATIOS GREATER THAN OR EQUAL TO ONE 

a/b 
V ' cr "cr Xcr rcr V Acr *cr acr Acr <J> vcr ffcr 

r 

Xx = -4 k^-2 "x—1 1^ = 0 

1.00 895.4 35.23 3.877 697.0 27.06 3.448 603.0 23.00 3.229 512.5 19.22 2.988 0.0 

1.25 644.5 21.59 4.481 471.6 15.58 3.911 391.0 12.85 3.592 314.7 10.18 3.263 

1.50 517.9 15.38 5.117 360.5 10.61 4.405 288.3 8.466 4.009 220.8 6.449 3.586 

1.75 444.6 12.04 5.767 297.6 7.986 4.938 230.7 6.170 4.486 169.5 4.739 3.884 

2.00 398.3 9.906 6.497 258.3 6.475 5.477 195.6 5.016 4.895 138.3 3.726 4.238 

2.50 344.6 7.616 7.965 212.6 4.708 6.747 155.8 3.694 5.847 104.0 2.724 4.958 

3.00 315.7 6.486 9.408 189.7 4.023 7.793 134.9 3.035 6.873 86.38 2.237 5.751 

4.00 286.7 5.375 12.43 166.2 3.259 10.21 114.4 2.434 9.001 69.39 1.801 7.461 

5.00 273.2 4.874 15.50 155.3 2.920 12.67 105.1 2.187 11.08 61.75 1.629 9.118 

7.00 261.1 4.444 21.70 145.6 2.630 17.71 96.75 1.974 15.32 54.98 1.479 12.68 

10.00 254.6 4.218 31.04 140.3 2.479 25.32 92.23 1.859 21.92 51.39 1.406 17.89 

15.00 251.0 4.097 46.69 137.4 2.398 38.09 89.75 1.799 32.93 49.40 1.366 26.81 

20.00 249.7 4.054 62.46 136.4 2.370 50.89 88.87 1.777 44.04 48.68 1.351 35.89 

50.00* 248.2 4.006 157.1 135.2 2.338 128.3 87.84 1.753 111.1 47.85 1.335 90.73 

100.00* 248.1 4.002 314.2 135.1 2.334 256.5 87.73 1.751 222.2 47.77 1.334 181.4 

co* 248.0 4.000 CO 135.0 2.333 CO 87.70 1.750 CO 47.73 1.333 CO 

^ = -4 *x = -2 kx'"1 "x = ° 

1.00 888.5 37.42 3.565 656.0 26.70 3.279 546.8 21.74 3.108 442.9 17.14 2.907 0.05 

1.25 652.0 22.91 4.121 456.9 15.63 3.723 366.6 12.30 3.486 281.9 9.413 3.174 

1.50 527.0 16.43 4.662 354.4 10.71 4.198 275.3 8.348 3.857 201.9 6.112 3.482 

1.75 453.6 12.45 5.365 294.7 8.109 4.695 222.8 6.211 4.280 156.8 4.457 3.814 

2.00 406.3 10.35 5.976 256.8 6.550 5.221 189.8 4.976 4.717 129.0 3.555 4.140 

2.50 350.7 7.931 7.286 213.0 4.897 6.296 152.2 3.648 5.664 97.86 2.591 4.881 

3.00 320.3 6.677 8.645 189.4 4.047 7.439 132.2 3.001 6.645 81.64 2.143 5.642 

4.00 289.7 5.484 11.40 165.9 3.270 9.713 112.4 2.404 8.685 65.90 1.730 7.309 

5.00 275.2 4.952 14.17 154.9 2.197 12.09 103.3 2.154 10.69 58.51 1.564 8.924 

7.00 262.2 4.486 19.87 145.0 2.619 16.88 95.10 1.933 14.90 52.38 1.420 12.37 

10.00 255.2 4.238 28.43 139.6 2.462 24.13 90.64 1.818 21.27 48.94 1.347 17.60 

15.00 251.3 4.107 42.84 136.7 2.378 36.29 88.19 1.757 32.00 47.05 1.308 26.43 

20.00 249.8 4.059 57.34 135.6 2.349 48.50 87.31 1.736 42.74 46.37 1.294 35.32 

50.00* 248.3 4.007 144.0 134.4 2.315 122.3 86.29 1.712 107.9 45.58 1.279 89.31 

100.00* 248.1 4.002 288.0 134.3 2.312 244.6 86.19 1.709 215.8 45.50 1.277 178.6 
CO* 248.0 4.000 CO 134.2 2.311 CO 86.15 1.709 CO 45.47 1.277 CO 

k^-4 "x = -2 "x—1 kx = ° 

1.00 910.9 43.97 3.516 602.4 27.80 3.275 459.1 20.74 3.106 325.0 14.19 2.899 0.2 

1.25 684.3 26.85 3.850 437.6 16.52 3.571 324.1 12.08 3.363 219.2 8.008 3.104 

1.50 557.7 18.58 4.304 347.0 11.32 3.949 250.8 8.146 3.700 162.8 5.335 3.359 

1.75 480.6 14.42 4.743 292.0 8.496 4.385 206.5 5.978 4.118 129.4 3.920 3.675 

2.00 428.1 11.46 5.331 256.2 6.906 4.807 178.3 4.879 4.467 108.1 3.138 3.989 

2.50 367.7 8.722 6.364 213.5 5.104 5.744 144.7 3.569 5.330 83.57 2.308 4.690 

3.00 333.4 7.280 7.420 189.9 4.165 6.778 126.4 2.911 6.262 70.35 1.893 5.484 

4.00 298.0 5.820 9.740 165.9 3.311 8.837 107.9 2.327 8.088 57.37 1.548 6.986 

5.00 281.0 5.166 12.08 154.4 2.931 10.93 99.11 2.061 10.04 51.28 1.393 8.601 

7.00 265.5 4.598 16.86 144.0 2.603 15.19 91.22 1.840 13.86 45.56 1.253 12.16 

10.00 256.9 4.296 24.12 138.3 2.428 21.76 86.88 1.721 19.87 42.88 1.198 16.94 

15.00 252.1 4.132 36.35 135.1 2.333 32.84 84.46 1.658 29.89 41.24 1.163 25.44 

20.00 250.2 4.070 48.72 133.9 2.301 43.87 83.59 1.636 39.92 40.64 1.151 34.00 

50.00* 248.3 4.009 122.2 132.6 2.263 110.4 82.57 1.611 100.9 39.95 1.136 86.02 

100.00* 248.1 4.002 244.4 132.5 2.259 220.7 82.46 1.608 201.7 39.87 1.135 172.0 * 248.0 4.000 CO 132.4 2.258 CO 82.43 1.607 CO 39.85 1.134 CO 

*Denotes preflutter solution for this value of a/b. 
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TABLE II.- FLUTTER SOLUTIONS FOR PANELS WITH LENGTH-WIDTH RATIOS GREATER THAN OR EQUAL TO ONE - Continued 

Acr *cr °fcr xcr 4>cr «or Acr <r>cr °tr Acr <?>cr acr 
a/b 

kx=-4 kx =-2 kx = -l kx =0 

1.00 960.0 52.41 3.999 583.9 30.52 3.659 409.2 20.69 3.431 247.5 12.03 3.122 0.4 
1.25 729.1 31.89 4.075 433.6 18.13 3.751 297.6 12.12 3.526 172.9 6.939 3.194 
1.50 596.0 21.89 4.330 348.1 12.38 3.991 234.6 8.182 3.759 131.6 4.646 3.386 
1.75 512.6 16.57 4.667 294.9 9.253 4.318 195.8 6.106 4.057 106.4 3.453 3.639 
2.00 456.7 13.41 5.042 259.4 7.437 4.667 170.0 4.863 4.405 89.97 2.754 3.939 
2.50 388.1 9.828 5.912 216.4 5.402 5.489 139.1 3.528 5.181 70.49 2.012 4.628 
3.00 349.0 7.999 6.842 192.2 4.374 6.372 121.9 2.888 5.961 59.89 1.673 5.315 
4.00 308.0 6.238 8.816 167.0 3.415 8.190 104.1 2.260 7.718 49.12 1.354 6.838 
5.00 288.0 5.434 10.89 154.8 2.978 10.12 95.58 1.989 9.492 44.06 1.223 8.327 
7.00 269.5 4.744 15.10 143.6 2.603 14.06 87.80 1.754 13.16 39.47 1.107 11.50 

10.00 259.0 4.370 21.50 137.3 2.405 20.04 83.44 1.631 18.74 36.92 1.048 16.33 
15.00 253.1 4.168 32.28 133.8 2.297 30.10 80.99 1.564 28.15 35.50 1.016 24.58 
20.00 250.8 4.088 43.41 132.4 2.257 40.51 80.11 1.541 37.62 34.98 1.004 32.84 
50.00* 248.4 4.011 108.8 131.0 2.216 101.5 79.06 1.513 95.05 34.37 .9915 83.09 

100.00* 248.1 4.002 217.5 130.8 2.211 203.0 78.97 1.511 190.1 34.32 .9902 166.1 
CO* 248.0 4.000 CO 130.8 2.210 CO 78.92 1.509 CO 34.29 .9897 CO 

kx=-4 kx=-2 kx = -l kx = 0 

1.00 1 089 73.71 5.528 594.8 38.09 5.047 364.1 22.31 4.656 152.6 8.771 3.978 1.0 
1.25 835.5 44.32 5.326 451.4 22.74 4.834 273.1 13.25 4.442 111.1 5.161 3.788 
1.50 684.6 30.22 5.281 366.7 15.38 4.796 219.8 8.920 4.419 87.02 3.469 3.801 
1.75 586.3 22.57 5.343 312.2 11.39 4.884 185.6 6.582 4.526 71.86 2.589 3.932 
2.00 519.7 17.72 5.512 275.0 8.950 5.066 162.4 5.215 4.711 61.70 2.100 4.102 
2.50 435.3 12.51 6.015 228.6 6.333 5.594 133.7 3.674 5.272 49.33 1.537 4.637 
3.00 385.9 9.841 6.667 201.6 4.993 6.261 117.2 2.923 5.932 42.32 1.268 5.241 
4.00 332.5 7.293 8.195 172.8 3.736 7.763 99.53 2.207 7.443 35.02 1.018 6.591 
5.00 305.5 6.134 9.867 158.4 3.165 9.404 90.97 1.910 8.938 31.46 .9106 7.996 
7.00 279.8 5.123 13.39 144.8 2.672 12.81 82.85 1.636 12.23 27.46 .7955 11.29 

10.00 264.7 4.570 18.85 136.9 2.405 18.08 78.17 1.490 17.31 26.34 .7698 15.59 
15.00 255.9 4.263 28.10 132.3 2.258 27.04 75.48 1.409 25.98 25.28 .7439 23.35 
20.00 252.6 4.151 37.45 130.6 2.205 36.05 74.49 1.381 34.60 24.90 .7344 31.17 
50.00* 248.7 4.019 94.31 128.6 2.143 90.78 73.30 1.347 87.27 24.44 .7240 83.56 

100.00* 248.2 4.005 188.5 128.3 2.136 181.5 73.17 1.344 174.5 24.39 .7228 167.1 
CO* 248.0 4.000 CO 128.3 2.134 CO 73.16 1.343 CO 24.35 .7223 CO 

kx=-4 kx=-2 kx = -l kx = 0 

1.00 1 231 98.00 6.933 635.3 47.94 6.439 354.7 25.55 5.994 97.89 6.396 4.978 2.0 
1.25 951.0 59.19 6.694 487.6 28.71 6.181 270.3 15.25 5.718 72.87 3.799 4.670 
1.50 780.4 40.10 6.595 398.3 19.41 6.066 219.6 10.26 5.591 58.14 2.617 4.539 
1.75 667.9 29.52 6.591 339.7 14.27 6.051 186.6 7.537 5.568 48.59 1.949 4.533 
2.00 589.3 23.04 6.657 299.0 11.14 6.108 163.7 5.896 5.626 41.99 1.542 4.624 
2.50 488.6 15.89 6.935 247.2 7.675 6.388 134.7 4.096 5.921 33.98 1.142 4.976 
3.00 428.3 12.20 7.357 216.4 5.936 6.824 117.7 3.180 6.385 29.28 .9353 5.461 
4.00 361.7 8.664 8.488 182.6 4.250 8.005 99.12 2.318 7.593 24.30 .7395 6.682 
5.00 327.0 7.051 9.853 165.3 3.494 9.388 89.65 1.931 8.984 21.81 .6542 8.019 
7.00 293.1 5.631 12.91 148.5 2.831 12.44 80.57 1.595 11.97 19.48 .5818 10.85 

10.00 272.5 4.847 17.82 138.3 2.468 17.29 75.18 1.411 16.75 18.12 .5434 15.26 
15.00 260.0 4.401 26.28 132.3 2.264 25.60 71.99 1.309 24.86 17.34 .5223 22.76 
20.00 255.1 4.235 34.87 129.9 2.187 34.10 70.78 1.272 33.08 17.05 .5148 30.32 
50.00* 249.0 4.032 87.35 127.1 2.097 85.34 69.29 1.227 83.18 16.69 .5059 76.54 

100.00* 248.3 4.008 174.6 126.8 2.087 170.6 69.11 1.222 166.3 16.65 .5050 153.0 
CO* 248.0 4.000 CO 126.7 2.085 CO 69.05 1.221 CO 16.65 .5047 CO 

"Denotes preflutter solution for this value of   a/b. 
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TABLE n.- FLUTTER SOLUTIONS FOR PANELS WITH LENGTH-WIDTH RATIOS GREATER THAN OR EQUAL TO ONE - Continued 

^cr <*cr »cr ^cr •Per ocr xcr *cr ofcr ^cr 0cr °fcr 
a/b r 

kx= ! 
kx = 2 kx=3 kx = 4 

1.00 426.0 15.37 2.747 343.4 11.79 2.477 264.6 8.200 2.190 190.9 5.287 1.818 0.0 

1.25 242.8 7.692 2.897 175.8 5.419 2.477 114.0 3.325 1.981 58.13 1.425 1.324 

1.50 158.5 4.757 3.059 101.7 3.131 2.477 51.31 1.690 1.724 8.359 .4618 .4498 

1.75 113.6 3.367 3.246 64.07 2.151 2.477 21.95 1.121 1.364 ** 
2.00 87.14 2.620 3.456 42.92 1.674 2.477 7.247 .9106 .8275 

2.50 58.80 1.877 3.976 21.97 1.276 2.477 * 
3.00 45.07 1.600 4.405 12.72 1.133 2.477 

4.00 32.29 1.342 5.477 5.365 1.042 2.477 

5.00 26.66 1.243 6.539 2.747 1.017 2.477 

7.00 21.93 1.160 9.002 1.001 1.005 2.477 

10.00 19.41 1.120 12.70 .3434 1.001 2.477 

15.00 18.03 1.099 18.97 .1017 1.000 2.477 

20.00 17.54 1.092 25.32 .0429 1.000 2.477 

50.00* 16.96 1.084 64.18 .0027 1.000 2.565 

100.00* 16.90 1.084 128.3 .0003 1.000 2.565 

CO* 16.88 1.083 CO .0000 1.000 2.565 

kx = 0.9 1 x= 1.859 kx = 2.7 kx = 3.6 

1.00 354.2 13.21 2.698 265.6 9.506 2.414 193.2 6.514 2.108 122.0 3.444 1.705 0.05 

1.25 210.8 6.926 2.859 141.2 4.588 2.424 86.11 2.727 1.930 34.36 .9302 1.159 

1.50 141.3 4.328 3.058 83.48 2.726 2.439 39.39 1.483 1.683 .8032 .3605 .06165 

1.75 103.2 3.145 3.242 53.27 1.919 2.448 16.90 1.035 1.330 ** 
2.00 80.30 2.463 3.475 36.00 1.520 2.458 5.447 .8706 .7860 

2.50 55.41 1.819 3.953 18.63 1.189 2.458 ** 
3.00 42.93 1.530 4.473 10.84 1.067 2.459 

4.00 31.27 1.288 5.590 4.599 .9883 2.479 

5.00 26.12 1.192 6.749 2.361 .9672 2.479 

7.00 21.69 1.113 9.242 .8626 .9563 2.479 

10.00 19.33 1.076 13.00 .2962 .9533 2.480 

15.00 18.04 1.056 19.44 .0878 .9525 2.480 

20.00 17.57 1.049 25.96 .0371 .9525 2.481 

50.00* 17.03 1.041 65.78 .0023 .9524 2.565 

100.00* 16.98 1.040 131.5 .0003 .9524 2.565 
CO* 16.96 1.040 CO .0000 .9524 2.565 

kx = 0.7 kx = 1-4 kx = 1.528 kx = 2.1 

1.00 237.8 10.20 2.692 157.6 6.537 2.427 143.9 5.883 2.374 86.24 3.376 2.024 0.2 

1.25 152.1 5.542 2.840 91.48 3.371 2.468 81.26 3.003 2.384 39.50 1.578 1.831 

1.50 107.2 3.637 3.017 ■      58.08 2.177 2.507 49.97 1.940 2.382 17.69 1.010 1.540 

1.75 81.21 2.673 3.233 39.48 1.606 2.578 32.74 1.445 2.399 6.807 .8136 1.092 

2.00 64.97 2.139 3.467 28.32 1.318 2.647 22.53 1.198 2.412 1.209 .7419 .3593 

2.50 46.66 1.597 4.004 16.47 1.060 2.800 11.93 .9876 2.422 ** 
3.00 37.15 1.358 4.547 10.81 .9635 2.921 7.034 .9079 2.443 

4.00 27.99 1.150 5.704 5.906 .8879 3.305 3.025 .8574 2.456 

5.00 23.83 1.063 6.959 3.940 .8634 3.718 1.563 .8432 2.461 

7.00 20.21 .9938 9.536 2.419 .8476 4.636 .5743 .8359 2.479 

10.00 18.24 .9586 13.53 1.668 .8411 5.883 .1978 .8340 2.479 

15.00 17.16 .9404 20.28 1.314 .8377 8.879 .05875 .8334 2.479 

20.00 16.77 .9344 27.07 1.183 .8369 11.72 .02480 .8333 2.479 

50.00* 16.31 .9270 68.48 1.032 .8358 29.66 .0016 .8333 2.565 

100.00* 16.26 .9263 136.9 1.014 .8357 59.16 .0002 .8333 2.565 
CO* 16.24 .9260 CO 1.009 .8357 CO .0000 .8333 2.565 

*Denotes preflutter solution for this value of   a/b. 
**A >   5, see appendix C. 
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TABLE n.- FLUTTER SOLUTIONS FOR PANELS WITH LENGTH-WIDTH RATIOS GREATER THAN OR EQUAL TO ONE - Concluded 

a/b 

xcr "V a er 
xcr <^cr acr xcr *cr a cr Xcr *cr acr 

r 

kx = 0.5 1^ = 1.0 1^ = 1.224 kx = 1.5 

1.00 173.2 8.178 2.917 105.2 4.904 2.620 77.25 3.602 2.437 45.95 2.172 2.132 0.4 

1.25 116.5 4.661 2.967 65.69 2.725 2.621 45.29 1.989 2.384 23.02 1.219 1.928 

1.50 85.50 3.127 3.112 44.65 1.844 2.684 28.60 1.373 2.361 11.63 .8744 1.717 

1.75 66.87 2.320 3.336 32.36 1.418 2.781 19.11 1.083 2.368 5.578 .7507 1.412 

2.00 54.89 1.883 3.564 24.68 1.186 2.901 13.34 .9362 2.379 2.240 .6975 .9850 

2.50 40.49 1.382 4.212 16.11 .9615 3.205 7.201 .8072 2.413 ** 
3.00 33.48 1.216 4.674 11.76 .8690 3.511 4.297 .7602 2.424 

4.00 26.08 1.027 5.922 7.706 .7938 4.212 1.871 .7289 2.458 

5.00 22.64 .9475 7.227 5.943 .7650 4.999 .9731 .7205 2.458 

7.00 19.59 .8830 9.928 4.464 .7439 6.623 .3595 .7160 2.459 

10.00 17.91 .8500 14.09 3.688 .7341 9.191 .1242 .7147 2.479 

15.00 16.98 .8326 21.12 3.267 .7291 13.67 .0370 .7144 2.479 

20.00 16.64 .8262 28.29 3.116 .7275 18.19 .0156 .7143 2.480 

50.00* 16.24 .8197 71.48 2.937 .7255 46.22 .0010 .7143 2.565 

100.00* 16.20 .8190 142.9 2.918 .7253 92.34 .0001 .7143 2.565 

CO* 16.19 .8187 «. 2.912 .7253 « .0000 .7143 2.565 

kx = 0.25 kx = 0.50 1^ = 0.75 kx = 0.80 

1.00 104.8 5.948 3.697 60.29 3.417 3.307 21.27 1.342 2.657 14.66 1.046 2.423 1.0 

1.25 74.85 3.500 3.520 41.53 2.040 3.149 13.04 .8954 2.466 8.330 .7238 2.200 

1.50 57.65 2.390 3.535 30.89 1.434 3.162 8.507 .7044 2.399 4.947 .5999 2.055 

1.75 46.89 1.799 3.671 24.32 1.125 3.268 5.830 .6172 2.368 3.004 .5465 1.918 

2.00 39.73 1.467 3.856 20.00 .9488 3.427 4.153 .5709 2.371 1.831 .5217 1.756 

2.50 31.07 1.117 4.335 14.88 .7690 3.843 2.305 .5307 2.379 .6277 .5020 1.338 

3.00 26.23 .9464 4.903 12.07 .6862 4.308 1.400 .5151 2.410 .1194 .4970 .5663 

4.00 21.24 .7910 6.171 9.247 .6129 5.366 .6225 .5051 2.424 ** 
5.00 18.83 .7258 7.465 7.918 .5822 6.503 .3270 .5021 2.449 

7.00 16.64 .6697 10.28 6.729 .5577 8.887 .1220 .5006 2.456 

10.00 15.41 .6408 14.57 6.069 .5451 12.56 .0424 .5001 2.466 

15.00 14.71 .6254 21.82 5.700 .5385 18.76 .0126 .5000 2.479 

20.00 14.45 .6199 29.16 5.565 .5362 25.00 .0053 .5000 2.479 

50.00* 14.15 .6136 73.74 5.405 .5336 63.48 .0003 .5000 2.565 

100.00* 14.11 .6129 147.4 5.389 .5333 126.9 .00004 .5000 2.565 
CO* 14.10 .6127 =o 5.383 .5332 co .00000 .5000 2.565 

kx = 0.125 \ =0.25 kx = 0.375 k x= 0.4444 

1.00 69.31 4.517 4.709 42.09 2.742 4.312 17.30 1.219 3.628 5.545 0.5716 2.836 2.0 

1.25 51.11 2.695 4.395 30.35 1.690 3.970 12.01 .8024 3.336 3.460 .4428 2.569 

1.50 40.39 1.857 4.265 23.77 1.178 3.884 8.964 .6157 3.249 2.297 .3901 2.456 
1.75 33.53 1.408 4.266 19.45 .9231 3.891 6.996 .5104 3.313 1.597 .3661 2.399 
2.00 28.86 1.142 4.361 16.57 .7675 4.010 5.796 .4672 3.374 1.151 .3536 2.374 
2.50 23.09 .8584 4.729 13.01 .6093 4.374 4.280 .4122 3.697 .6503 .3420 2.384 

3.00 19.77 .7174 5.239 10.98 .5319 4.859 3.441 .3869 4.094 .4000 .3378 2.389 
4.00 16.26 .5902 6.414 8.871 .4617 5.993 2.592 .3651 5.006 .1803 .3348 2.407 
5.00 14.52 :5347 7.705 7.836 .4320 7.207 2.190 .3560 6.024 .0955 .3339 2.435 
7.00 12.91 .4873 10.47 6.882 .4069 9.812 1.829 .3488 8.107 .0359 .3335 2.445 

10.00 11.97 .4623 14.74 6.337 .3938 13.84 1.628 .3451 11.45 .0125 .3334 2.471 
15.00 11.44 .4488 22.00 6.026 .3868 20.68 1.515 .3431 17.14 .0038 .3334 2.477 
20.00 11.24 .4439 29.36 5.911 .3843 27.60 1.474 .3425 22.87 .0016 .3333 2.485 
50.00* 11.00 .4384 74.09 5.775 .3814 69.78 1.424 .3417 58.02 .0001 .3333 2.565 

100.00* 10.97 .4377 148.1 5.759 .3811 139.5 1.420 .3416 116.0 .00001 .3333 2.565 
CO* 10.96 .4375 » 5.753 .3810 «, 1.418 .3416 » .00000 .3333 2.565 

Denotes preflutter solution for this value of   a/b. 
**A > 5, see appendix C. 
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TABLE III.- COMPARISON OF PRE FLUTTER AND 

EXACT FLUTTER SOLUTIONS FOR  J = 20 
b 

r kx ^cr XP 

0 -4 249.7 249.3 

-2 136.4 136.0 

-1 88.87 88.58 

0 48.68 48.45 

1 17.54 17.39 

1 1 
2 .0429 .0422 

0.05 -4 249.8 249.4 

-2 135.6 135.3 

-1 87.31 87.02 

0 46.37 46.15 

.9 17.57 17.43 

' 1 

1.859 .0371 .0364 

0.2 -4 250.2 249.8 

-2 133.9 133.6 

-1 83.59 83.31 

0 40.64 40.46 

.7 16.77 16.65 

1.4 1.183 1.153 

1.528 .0248 .0244 
' ' 

r kx 
Acr Ap 

0.4 -4 250.8 250.3 

-2 132.4 132.1 

-1 80.11 79.84 

0 34.98 34.82 

.5 16.64 16.54 

1.0 3.116 3.073 
■ 1.224 .0156 .0156 

1 -4 252.6 251.8 

-2 130.6 130.2 

-1 74.49 74.25 

0 24.90 24.78 

.25 14.45 14.38 

.5 5.565 5.525 

■ .75 .0053 .0053 

2 -4 255.1 254.3 

-2 129.9 129.5 

-1 70.78 70.51 

0 17.05 16.97 

.125 11.24 11.18 

.250 5.911 5.880 

.375 1.474 1.462 
' .4444 .0016 .0016 
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Figure 2.-  Frequency loop illustrating X'cr. 

36 



(V)l/3 

er 

II                                                                              II   1 

1 u 
x             x      L-k ^.-^    \ 
^,~--''~               \ 

—"~'~^                           2      !v 
°                                                 1 j         >. 

■-'—    i\ 

^"""^            L-K   \~         ^ 
—=—"—"*"                 ^^'^\    V         X 

 ^- ^"                             ^.^-^               0    V      \                 V 

®                                       ^-■^'^            .^'"N \  \          \ 
_, —          ^.^^      i\-A  X      "\ 

 "~                 —^"^          -^K \   \   v.         ^ 
^^^                        ^"^     '\     X     V-     v-               ^. 

  """                            ^^^               2    \     N       \       \                      \ 
^,^-:="         ^^\   ^ \ K ^         ^^ 

^-^^                               ^^                   L_A      V      V      X                              ^s 
 ■ — --""                     ^^             3   \    v    >.   "\     \                  v^ 

.^-"■^                  ^^^     V-         ^>         v-     X                           "^   -■'                   x        \   \   V   V    \      \ 

—"~^         *-         *\ \ \ s \ N 
^^**            ^^   4   X   X   X   ^      S      ^^ 

^^"                        ^                U            ^-    V-    ^        X            ^=^> ___ —-~~"                    ~7              V   V   V    \      \      ^\           ^— 
""'"                                            /                                               V-    ^        ^V        ^V 

^"^                 ^ X -S    v    v      ^ 
/'                                                                                    \             >                 V              \                  ^..                  ^-~__ 

^■^                                       V-   X           S        v 
A                  -"^                                                       5              S!       x          S, 
 ^                                                                            l_    c        1_        s_           ^ 

t    A        V         N.               ^== 
4     V     v     V 

L__5     5       S 
9                                                                                                                                   t         V           V               ^r A      V       \           ^^ 

V   1         V            ^ 
£      V-      V 
X      4         X 

?                                                                         4      4           V- 
4        V-        A 

'         l-        -V 
T            4                         V t     4            ^ 

4              V 1                                                                            4               X 
V ^ 

v 
3 

cr 

.4 .6 
a 

.0 .8 

(a) r  or  r' = 0. 

Figure 3.- Flutter values of dynamic pressure parameter. 
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Figure 3.-  Continued. 
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Figure 3.-  Continued. 
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Figure 3.-  Continued. 
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Figure 4.-  Flutter values of dynamic-pressure parameter.  kx or k'x = 0.0. 
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Figure 5.-  Effect of transverse shear flexibility and stress on  Acr.  a/b = 1. 
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Figure 6.-  Effect of stress on the flutter boundary for  r  constant. 
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Figure 7.-  Comparison of flutter boundaries from two-mode Galerkin solution and exact solution.  kx = 0. 
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Figure 8.-  Mode shape at flutter for an unstressed square sandwich panel,  a/b = 1; kx = 0. 
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Figure 9.-  Comparison of preflutter and exact flutter boundaries.  kx = 0. 
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Figure 11.-  Effect of transverse shear stiffness on the flutter solution,  a/b = 1; kx = 0. 
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